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Abstract

A frequency-domain approach is used to study the effects of a velocity-dependent force caused by the
rubbing between the reamer margins and the hole wall. The solution method determines tool stability and
hole form. The velocity-dependent force, colloquially known as process damping, has been used in turning
and milling, where it has been shown to stabilize the system at low spindle speeds. The addition of the
process-damping model in the reamer model stabilizes self-excited chatter near the first fundamental tool
bending frequency, but destabilizes low-frequency vibration. The method yields combinations of cutting
speed and depth of cut that bind stable cutting regions. The boundaries for reaming with no process
damping closely resemble the shape of milling stability diagrams, but the small radial depth of cut is
unrealistic. The addition of process damping changes the shape of the stability regions and also increases
the stable depth of cut. Notably, eigenvalue solutions are found with increased process damping that lead to
low-frequency whirling modes, which resemble those found in practice. A simulation using a numerical
Euler integration technique will be used to match the analytical model. The simulation will allow for future
research using nonlinear models, uneven tooth spacing, and arbitrary initial hole profile data.
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see front matter r 2004 Published by Elsevier Ltd.
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Nomenclature

x; Z tool-fixed frame on cutting tooth
geometry (m)

X;H tool-fixed frame in uncoupled struc-
tural directions (m)

x; y lab-fixed frame (m)
T transformation matrix
z axial, or feed, direction (m)
y angle between x-axis and x-axis (rad)
W angle between x-axis and X-axis (rad)
O spindle speed (rad/s), equals _y
t time (s)
Nt number of teeth
t0i time delay between each tooth pass

(s)
t0 time delay between each tooth pass

for equally spaced tools (s)
t discrete time delay between each

tooth pass for equally spaced tools
(steps)

fi tooth position from x-axis (rad)
Dfi tooth spacing between each tooth

(rad)
ks cutting pressure coefficient ðN=m2Þ
a cutting force angle (rad)
kr rubbing stiffness coefficient (N/rad)
r0 mean tool radius (m)
R00 pilot hole radius (m)
r chamfer angle (radians)
Hnom mean feed per tooth (m)

Lnom mean chip length in 2D frame (m)
DL dynamic uncut chip length (m)
mr geometry ratio
m regeneration factor
mf coefficient of friction
on tool natural frequency (rad/s)
mii tool modal mass in ii direction (N/m)
kii tool stiffness in ii direction (N/m)
cii tool damping in ii direction ðNs=mÞ
zii tool damping ratio in ii direction
M mass matrix (kg)
Cr damping matrix, rotating coordinate

system ðNs=mÞ
Kr stiffness matrix, rotating coordinate

system (N/m)
Kcc cutting pressure matrix, rotating co-

ordinate system ðN=m2Þ
Cpd process damping matrix, rotating

coordinate system ðNs=mÞ
Gpdðo;OÞ FRF for system in rotating frame (m/

N)
Rðo;OÞ regeneration matrix ðN=m2Þ
Ppd ðo;OÞ stability matrix, rotating coordinate

system ðm�1Þ
~F ext external force vector (N)
~Fc cutting force vector (N)
~Fr process damping force vector (N)
n discrete step
dt discrete time step
Do frequency interval for numerical

search of zero-axis crossing
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1. Introduction

Reaming is a common metal-cutting process, and the quality of hole form is often a critical
issue. Stability and hole form in precision holemaking is of interest because of reduction in rework
cost and part fatigue issues. An understanding of tool vibration during cutting, and the resultant
effects on hole form, is an important step toward achieving high-precision holes. Tool dynamics
was originally studied in turning and endmilling processes where time-delayed regenerative forces
were responsible for instability [1–3]. These authors predicted stability regions using frequency-
domain analysis where combinations of axial depth of cut (ADOC) and spindle speed (rpm)
provided high metal removal rates. Later, more sophisticated analytical methods were used to
predict endmill stability lobes with greater accuracy [4,5].
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The use of stability diagrams for milling has had a significant influence on industry in recent
years, but dynamic studies in drilling, reaming, and boring have had less impact. Fujii, Marui, and
Ema studied out of round, or lobed holes, in drilling by showing how tool whirling affects final
hole form [6–8]. In experimental investigations of reaming, Sakuma and Kiyota [9,10] have shown
that motion at Nt cycle/rev, where Nt is the number of cutting flutes, leads to lobed holes with
Nt � 1 or Nt þ 1 lobes. Li et al. [11] studied the effect of rotation in boring bars. The formation of
lobed holes in reaming was analyzed quasi-statically by Bayly et al. [12], and stability boundaries
in drilling and reaming with no process damping have been estimated by Metzler et al. [13] using a
method similar to Altintas and Budak [5].
In practice, two types of instability can be distinguished: (1) regenerative chatter (vibration of

the tool near its natural frequency) and (2) low-frequency whirling vibrations leading to out-of-
round holes, as shown in Fig. 1. The lobed or multi-pointed holes that result from the latter
instability can appear to be within specification when measuring opposite points, yet may still fail
to accept a round fastener of the appropriate size.
This work extends the analysis by Metzler et al. [13] of a dynamic model of reaming by showing

the effect of process damping on the stability regions. Unlike milling and turning, which are
simply stabilized by process damping, low-frequency modes responsible for lobed holes in
reaming are destabilized from the interaction of process damping with cutting and bending forces
on the rotating tool.
2. Analytical model

2.1. Tool dynamics

In use, a straight-fluted reamer typically exhibits bending vibration with minimal torsional or
axial vibration. This simplifies the analysis by modeling only the primary bending modes. Small
linear displacements are assumed since the movement at the tool tip is minimal compared to the
tool length. In addition, slender tools are typically modeled using the first bending mode, as the
higher modes are much stiffer and have less influence on hole form, especially with forcing
frequencies less than the natural frequency of the first bending mode. These assumptions allow the
reamer to be modeled as a two-degree-of-freedom (2dof) lumped parameter system at the tool tip
with an uncoupled single mode in each direction, while the external forces act as a single point
load on the tool.
There are three reference frames that will be used in this paper, as shown in Fig. 2. The lab-fixed

frame, x–y; is a non-rotating frame. The tool-fixed frame with respect to the cutting teeth, x–Z; is
used for cutting forces, while a tool-fixed frame, X–H; with respect to the uncoupled directions is
used for developing the structural model. A symmetric tool with four flutes is virtually uncoupled;
so x2Z � X2H:However, a tool with six flutes requires a rotation angle, W; between the tool-fixed
frames. An equivalent modal mass is assumed suspended by springs and dampers in the X–H
frame, where parameter values can be identified from experimental modal tests of the tool. The
dynamic parameters ðm; c; kÞ can be different for each direction; however, they will be considered
identical in this qualitative study of a symmetric reamer. The type of model used depends on the
structure. If the non-rotating portion of the machine tool dominates the dynamics, a fixed system
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Fig. 1. A typical hole profile for a reamer showing observations of lobing. Reaming was performed at 500 rpm,

12.7mm tool diameter, 11.9mm pilot hole (radial depth of cut ¼ 0:4mm). (a) Hole profile, feed ¼ 0:15mm=rev; from a
roundness and concentricity measuring machine (Talyrond T130 (Taylor and Hobson, UK). This hole has a roundness

error of 19mm: Panel (b) shows the hole profile after filtering out frequencies above 8/rev. It looks like a 5-lobed hole.
However the high frequency may have created the long flat areas on a 7-lobed hole. (c) Hole profile, feed ¼

0:30mm=rev; from Talyrond. This predominantly 7-lobed hole has roundness error of 20mm: Panel (d) shows the hole
profile after filtering out frequencies above 8/rev. Roundness error was calculated by least-squares fitting a circle to the

hole profile and calculating the difference between the diameters of the concentric circles tangent to the maximum and

minimum deviations.

Fig. 2. Reference frames and angles for 2dof tool model: x–y is lab fixed; x–Z tool fixed on the main cutting edge; X–H
tool fixed on the structural eigenvalues. (a) Structural diagram, (b) force diagram, (c) transformation angles.
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is recommended. If the rotating portion (spindle arbor, toolholder and tool geometry) dominates
the dynamics, a rotating system is suggested. As shown by Metzler et al. [13] a fixed frame is
identical to a rotating frame model for symmetric tools with three or more teeth.
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Since the derivation of the cutting and rubbing forces in the fixed frame can lead to time-
varying coefficients for asymmetric tools, this difficulty is avoided when using a coordinate frame
that rotates with the tool. Therefore, the cutting and process damping forces will be modeled in
the x–Z frame. The transformation matrix between the frames is

~x ¼
x

Z

" #
¼

cos y sin y

� sin y cos y

" # !
x

y

" #
¼ TðyÞ~x;

~X ¼
X

H

" #
¼

cos W sin W

� sin W cos W

" # !
x

Z

" #
¼ TðWÞ~x: ð1Þ

The rotating system includes centripetal and Coriolis coupling terms in the dynamic matrices
[11,13] that are dependent on the spindle rotational speed, O; in radians per second

M
€X
€H

" #
þ Cr

_X
_H

" #
þ Kr

X

H

� �
¼ ~F ext; (2)

where

M ¼
mXX 0

0 mHH

� �
; Cr ¼

cXX �2mXXO

2mHHO cHH

� �
; Kr

kXX � mXXO2 �cXXO� mXX _O

cHHO� mHH
_O kHH � mHHO2

" #

and the external forces include cutting and rubbing forces in the rotating frame

~F ext ¼ ~Fc þ ~Fr: (3)

In most cases, the angular acceleration, _O; will equal zero as most spindles rotate at a constant
rpm. Again, it remains in the equation for generality. Since the forcing function is modeled in the
rotating frame, the centripetal and Coriolis terms are necessary for the rotating tool model. The
stability analysis for a symmetric four-flute reamer, Fig. 3, shows that removing the centripetal
and Coriolis terms greatly affects the stability regions. Remember, the rotating forcing function
was used. So this does not show the difference between a fixed and rotating model, only the effect
of removing the coupling terms.
2.2. Cutting forces

Dynamic cutting forces are taken as the result of deviations of the uncut chip thickness, DL;
from the nominal value. As shown in Fig. 4 for a four-fluted reamer, the displacement of the
reamer~x ¼ ½x Z�T affects DL on each tooth, resulting in a net force. A deflection at the time of the
previous tooth passage, ~xðt � t0Þ where t0 is the time between successive tooth passes for even
spaced tools, also changes the uncut chip thickness. This delay term is classically referred to as
regeneration. It is shown in Fig. 5 that tool displacement increases the uncut chip area by adding
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Fig. 3. Effect of centripetal and Coriolis terms in a stability analysis for a four-flute symmetric reamer: op ¼ 382Hz;
k ¼ 186; 000N=m; z ¼ 0:002; no process damping. The plots shown by ‘.’ include these terms and ‘+’ are the results of
the terms equal zero. The non-dimensional value O=on equal one when spindle speed is 22,920 rpm.

Fig. 4. (a) Nominal chip thickness, (b) change in chip thickness due to tool displacement (a ¼ cutting force angle).
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material on the side and also in the z-direction. These will be referred to as side and up–down
regeneration, respectively.
The solution method shown in a later section is simplified if a single stability variable is used;

therefore, this model will use the nominal radial length of cut ðLnomÞ as the stability variable,
where Lnom is also known as the radial depth of cut (RDOC) for a straight-fluted reamer. The feed
rate affects stability, but only one stability variable is desired, so the feed per tooth ðHnomÞ will be



ARTICLE IN PRESS

Fig. 5. Uncut chip area for a straight-fluted reamer at one position of the hole. Four tooth passes are shown.
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scaled as a ratio of Lnom; Eq. (4). This assumption is reasonable since many reamer processes are
designed with the feed per tooth as a ratio of the radial depth of cut, as the nominal chip area is
Hnom multiplied by Lnom:

mr ¼
Hnom

Lnom
: (4)

The amount of material left to cut from the previous pass will be found by multiplying the
regeneration factor, m; by the tool displacement from the previous pass. The regeneration factor is
dependent on the Chamfer angle ðrÞ; Hnom; and Lnom: In this model, for simplicity any cutting on
the flutes above the tip is neglected. The vast majority of material is removed at the tool tip, and
we hypothesize that the dominant effects above the tip are burnishing and elastic deformation as
the tool traces its initial profile. A numerical simulation, such as a finite element method or an
Euler simulation shown in Section 5, would be required to solve a more detailed model including
forces from additional tooth passes, elasticity, and plasticity from burnishing for improved
quantitative prediction capability:

m ¼
mr þ 1= tan r
2mr þ 1= tan r

: (5)

Since m is always less than one, the solution is nontrivial as will be shown later in the stability
analysis. The force vector with respect to the rotating frame for a symmetric reamer is found by



ARTICLE IN PRESS

D.N. Dilley et al. / Journal of Sound and Vibration 280 (2005) 997–10151004
summing the force on each tooth

Fcx

FcZ

� �
¼ Lnom 2mr þ

1

tan r

� �
ks

XNt

i¼1

ciCi siCi

ciSi siSi

� �
I

xðtÞ

ZðtÞ

� �
� mTðDfiÞ

xðt � t0iÞ

Zðt � t0iÞ

� �� �
; (6)

where

ci ¼ cosðfiÞ; si ¼ sinðfiÞ; Ci ¼ cosðfi � p=2� aÞ; Si ¼ sinðfi � p=2� aÞ;

where fi is the tooth angle from the x–Z axis (e.g. f ¼ ½0;p=3; 2p=3; p; 4p=3; 5p=3�; Dfi ¼

fi � fi�1 ¼ p=3 for a straight six-fluted symmetric tool), TðDfiÞ is found by substituting Dfi into
Eq. (1), and t0i is the time between successive tooth passages where the indices are required for
uneven tooth spacing. This angular notation is consistent with Metzler et al. [13]:

t0i ¼
Dfi

O
: (7)

The local cutting pressure, ks; used in Eq. (6) was 2:84	 10
8 N=m2 [14] with a cutting direction

angle, a; of 20
 for zero rake angle [15] as shown in Fig. 4(b). The specific cutting pressure value is
similar to previous values found for aluminum, where Al 6061-T6 equaled 2:06	 108 N=m2 [16],
and Al 7075-T6 equaled 8:50	 108 N=m2 [17]. In this analysis, ks is considered a constant that is
independent of cutting speed. Stephenson and Agapiou [15] have shown that steady-state forces
change with cutting conditions such as speed. However, these changes have minimal impact on
magnitude and no impact on the frequency content of the stability predictions. Constant local
cutting pressure has been used successfully in the past for predicting stability regions [3–5]. The
final form of the cutting force for a symmetric tool using a constant time delay for each tooth,
such that t0i ¼ t0; and Dfi ¼ Df for all teeth is

Fcx

FcZ

� �
¼ LnomKccðI~xðtÞ � mTðDfÞ~xðt � t0ÞÞ; (8)

Kcc ¼ 2mr þ
1

tan r

� �
ks

XNt

i¼1

ciCi siCi

ciSi siSi

� �
: (9)
2.3. Process-damping forces

Vibrations of the cutting tool result in an uneven work surface, thus varying the effective tool
clearance angle causes an additional radial (bending) force. As noted in Delio et al. [18], the
additional force is 901 out of phase with the tool displacement, and increases with the spatial
frequency of the surface variations. These observations lead to a first-order model of the process-
damping phenomenon for turning, first suggested by Tobias [1], where r0 is the tool radius, and mf

is friction:
Normal force:

Fn / �
dr

ds
¼ �

dr

dt

dt

ds
¼ �_r

1

Or0
; (10)
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Fig. 6. Process damping for a four-fluted reamer Tool velocity is shown in the positive x–Z direction, causing rubbing
on tooth 1 and 2. Force vector equations shown for all teeth.
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Frictional force:

Ft ¼ mf Fn: (11)

Tool velocity from vibration causes a contact force to occur normal to the margin-wall
interference, with friction providing an orthogonal component. The contact force is found by
using a rubbing stiffness coefficient ðkr in N/rad) for small angles, which is dependent on material
and margin geometry. Previous research in turning assumes process damping to be similar to
indenting [16,19], which multiplies a material dependent variable by a displaced volume that
depends on the tool nose radius and flank relief angle. The proportionality of tool velocity divided
by rotational velocity is consistent for both the prior turning model and the reaming model in this
paper (see also Fig. 6). However, due to the differences between turning and reaming tools, it
would be unjustified to place the quantitative turning values into the reaming model. Since an
experimental method to determine kr for reaming has not been shown in past research, and is
beyond the scope of this paper, a study using different values of kr will be used to show the
qualitative change in stability as the value increases. Using the following geometric equations for
each cutting tooth, subscript i; a summation of the assumed rubbing forces on each tooth can be
assembled into a lumped force in the x–Z frame:

_riðtÞ ¼ ½ci si�
_xðtÞ

_ZðtÞ

" #
;

FrxðtÞ

FrZðtÞ

� �
¼ CpdðOÞ

_xðtÞ

_ZðtÞ

" #
; (12,13)

CpdðOÞ ¼
kr

r0O
1

2

XNt

i¼1

�ci si

�si �ci

" #
1

mf

" #
½ci si�; general

¼
Nt

4

kr

r0O

�1 mf

�mf �1

" #
; symmetric reamer: ð14Þ

The complete process-damping matrix, Cpd ; accounts for a lumped value based on material,
margin geometry, tool radius, tooth spacing, and spindle speed.
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3. Stability analysis

The equations of motion in the x–Z frame can be simplified into the form of an eigenvalue
problem to solve for the stability limit. The eigenvalue corresponds to the value for Lnom;
therefore, the eigenvalue must be a positive real value for the solution to have physical meaning:

Mx
€~xðtÞ þ Cx

_~xðtÞ þ Kx
~xðtÞ ¼

~FxðtÞ

~FZðtÞ

" #
; (15)

where

Mx ¼ ðT�1ðWÞMÞ; Cx ¼ ðT�1ðWÞCrÞ; Kx ¼ ðT�1ðWÞKrÞ;

~FxðtÞ

~FZðtÞ

" #
¼ LnomKccðI~xðtÞ � mTðDfÞ~xðt � t0ÞÞ þ Cpd

_~xðtÞ: (16)

Since Lnom does not multiply Cpd ; it will be moved to the left-hand side of the equation.
Combining Eqs. (15) and (16) gives the following equation of motion:

Mx
€~xðtÞ þ ðCx � CpdÞ

_~xðtÞ þ Kx
~xðtÞ ¼ ðLnomKccðI~xðtÞ � mTðDfÞ~xðt � t0ÞÞÞ: (17)

The desired result of the analysis is a set of parameters: spindle speed, frequency of vibration,
and radial depth of cut fO;o;Lnomg; which satisfies the equations of motion at the limit of
stability, given all other parameters in the equations of motion. At the limit of stability the tool
motion will be periodic, allowing the desired values to be obtained by satisfying the Laplace
transform of the equations of motion where s ¼ io:

ðI� LnomGpdðo;OÞRðo;OÞÞ
x̄

Z̄

" #
¼

0

0

� �
; (18)

where

Gpdðo;OÞ ¼ ½�o2Mx þ ioðCx � CpdÞ þ Kx�
�1;

Rðo;OÞ ¼ KccðI� me�iot0TðDfÞÞ:

Note in the regeneration matrix, R, if m is equal to or greater than 1, a trivial solution can be
found without regard to the stability value, Lnom; which is why m; Eq. (5), must always be less than
one. An eigenvalue problem is now formed for the matrix Ppd where Lnom is the solution to a given
chatter frequency ðoÞ and spindle speed ðOÞ: Since the eigenvalue is complex, but Lnom is a
physical value that must be positive, the usable solutions only occur when the imaginary part is
equal to zero, and the real part is positive:

ðI� LnomPpdðo;OÞÞ
x̄

Z̄

" #
¼

0

0

� �
; (19)
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where

Ppdðo;OÞ ¼ Gpdðo;OÞRðo;OÞ:
4. Solution method

The solution to the matrix problem in Eq. (19) has two complex eigenvalues that will be sorted
in ascending order so the first eigenvalue always has the smallest absolute value. Since this is a
linear system, the eigenvalue provides information on whether the system is stable, critically
stable, or unstable. The following numbered steps outline the numerical method to find the
eigenvalue solutions that are real and positive: (1) set spindle speed, O; and define the tool
dynamic matrices; (2) solve the eigenvalue problem for a range of frequencies, o; with resolution
Do; (3) sort the eigenvalues into ascending order so the first eigenvalue always has the smallest
absolute value; (4) check if the imaginary part of each eigenvalue crosses the zero axis (this occurs
when the sign of the imaginary part changes in the interval Do); (5) a numerical search is then
used to find a more precise solution (a two-point method (regula-falsi) was chosen because it
encapsulates the solution; an iteration stop must be used because a sign change can occur at a
singularity where no root is present); (6) if a zero-axis crossing of the imaginary term is found,
then check if the real part of the root is greater than zero; if so, save the real part, which is equal to
Lnom; in addition, save the values O and o that produced this usable solution; (7) repeat for a
range of spindle speeds.
The output for each iteration with a usable solution is the set fO;o;Lnomg; which defines the

borders of stability.
5. Numerical simulation

Results from an Euler simulation will be used for comparison with the analytical results. The
simulation uses Euler integration of Eq. (17) to produce results such as stability, frequencies, and
hole form. The simulation should match the stability predictions. For comparison to the
analytical solution, nine revolutions were run. The stability criterion was determined by
comparing the maximum radius during the last two revolutions with the maximum radius of the
previous two revolutions and the change in the mean radius over the same interval. Since this is a
linear model, an unstable solution moves toward infinity, while a stable solution moves toward
zero. For this reason, the output often has small numbers because the more the revolutions run in
the simulation, the closer the value moves toward zero, but qualitatively it shows the basic hole
form found in the experiment.
All of the forces acting on the tool modal mass must be found to determine tool motion. These

forces include the cutting and process damping, and the stiffness and damping in the structure.
The subscript, n; denotes the time step, dt; since the equation must be converted to a discrete form.
The number of steps for the time delay is denoted by the subscript t:

~F tot;n ¼ �Cx
_~xn � Kx

~xn þ ðLnomKccðI~xn � mTðDfÞ~xn�tÞÞ þ Cpd
_~xn: (20)
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Once the forces were found, the acceleration of the tool point mass was determined using
Newton’s second law

€~xnþ1 ¼ ðMxÞ
�1~F tot;n: (21)

Using kinematic approximations, velocity and displacement were determined for the tool at the
next time step:

_~xnþ1 ¼
_~xn þ dt

€~xnþ1; ~xnþ1 ¼
~xn þ dt

_~xnþ1: (22,23)

The smaller the time step used, the less the error, but the slower the computational time. In
addition, when the time step became too large, numerical instability occurred. The time step
chosen to prevent this instability was 1/300 of the smaller number between the tool natural period
and the period of rotation. Convergence was checked at each spindle speed.
The validation of this simulation technique to the analytical solution is important in future

work that may include nonlinear forcing functions, irregular spaced cutting teeth, or an initial
Fig. 7. Stability boundaries for a six-flute reamer with no process damping. Tool dynamics are identical in both X–H
directions: on ¼ 292Hz; k ¼ 186; 000N=m; z ¼ 0:002: Cutting process parameters: kr ¼ 0N=rad; m ¼ 0:94; ks ¼

2:84	 108 N=m2: Dots are solutions for 1st, and stars are solutions for 2nd eigenvalue. (a) Lnom; (b) frequency, (c)
cycles per revolution.
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hole profile that cannot be solved analytically. In addition, the numerical simulation produces
hole-form results.
6. Results

Machining stability boundaries are often plotted with rpm and DOC ðLnomÞ; parameters that
are conveniently controlled by the machine tool operator. The following subsections show the
model’s predicted stability boundaries using previous models and with velocity-dependent
process-damping forces added to the external force model.

6.1. Cutting forces only

The stability boundary has a repetitive u-like structure, as shown in Fig. 7. Each
point represents a neutrally stable analytical solution. Parameter combinations above the
boundary are unstable. Each region has infinite Lnom at the natural frequency, a minimum
value at a slightly higher frequency, and a progression back toward infinite Lnom as the
frequency approaches infinity. Overlap of neighboring regions keeps stable Lnom values
Fig. 8. Stability boundaries for a six-flute reamer with process damping: kr ¼ 50N=rad; mf ¼ 0:25: Dots are solutions
for 1st, and stars are solutions for 2nd eigenvalue. (a)–(c) as in Fig. 7.
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finite. Since the regeneration factor, m; is less than one, there are unique lobes and chatter
frequencies at most values of O: The unstable frequencies are then mapped into Fig. 7(b), where
they all occur above the tool natural frequency. Fig. 7(c) normalizes the left axis to tool cycles per
spindle revolution.
6.2. Inclusion of process-damping forces

In Fig. 8 a low value of process damping causes the low limit to increase, and higher values of
Lnom can be obtained at lower cutting speeds. This is similar to the effect in 1 dof system
[16,18,19]. Process damping is inversely proportional to spindle speed, so stability generally
increases for decreasing spindle speeds.
As levels of process damping are increased in Fig. 9, additional solutions are obtained

for frequencies of vibration below the tool natural frequency. The first eigenvalue is plotted
with a dot, and the second eigenvalue is plotted with a star. The shape of the solution set
changes significantly as process damping is added, and the value of Lnom increases significantly
as process damping is increased. The numerical simulation output for a four-flute
reamer is compared to the analytical solution in Fig. 10, where the � are stable and 0 are
Fig. 9. Stability boundaries for a six-flute reamer with process damping: kr ¼ 200N=rad; mf ¼ 0:25: Dots are solutions
for 1st, and stars are solutions for 2nd eigenvalue. (a)–(c) as in Fig. 7.
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Fig. 10. Stability boundaries obtained by frequency domain analysis (dots) for a four-flute reamer. Simulation data

shown by stars (stable) and circles (unstable). Stability boundaries for a four-flute reamer with process damping,

kr ¼ 80N=rad: Tool dynamics are identical in both X–H directions: on ¼ 382Hz; k ¼ 52; 400N=m; z ¼ 0:006: Cutting
process parameters: kr ¼ 0N=rad; m ¼ 0:83; mf ¼ 0:5; ks ¼ 2:84	 10

8 N=m2:
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unstable solutions from simulation. The numerical simulation matches well with the analytical
solution.
The hole form for a six-fluted reamer from the simulation is shown in Figs. 11 and 12. A three-

dimensional plot of a single spindle revolution is shown in Fig. 11. It can be seen that the form
helically moves down the hole, so the motion is not at an exact integer multiple of spindle speed. A
cross-section of the hole is shown in Fig. 12, which shows the profile that would be found by
gauging the hole. Similar plots are shown in Fig. 13 for a four-fluted reamer. It can be seen that
with enough process damping, the four-fluted reamer generates a five-lobed hole and the six-fluted
reamer generates a seven-lobed hole. Therefore, as process damping increases, several phenomena
are observed.
�
 The minimum value ðLnomÞ increases with increasing levels of process damping.

�
 Secondary unstable solutions with frequency less than the natural frequency become available
as process damping is increased. These solutions eventually become dominant as process
damping increases.
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Fig. 11. Three-dimensional plot of the hole for one revolution of a six-flute reamer. Tool dynamics are identical in both

X–H directions: on ¼ 292Hz; k ¼ 186; 000N=m; z ¼ 0:002: Cutting process parameters: m ¼ 0:94; ks ¼ 2:84	
108 N=m2; mf ¼ 0:25: (a) kr ¼ 50N=rad; feed ¼ 0:15mm=rev; (b) kr ¼ 100N=rad; feed ¼ 0:15mm=rev; (c) kr ¼

200N=rad; feed ¼ 0:15mm=rev; (d) kr ¼ 200N=rad; feed ¼ 0:30mm=rev:
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�
 The approximate lower frequency MNt þ 1 (Nt ¼ number of teeth, M ¼ arbitrary integer)
cycles per revolution are found as process damping is increased, which are usually seen in
practice.
�
 When process damping reaches a given level, the stability region practically loses dependence on
spindle speed.
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Fig. 12. Cross-sections of the hole from Fig. 1, respectively.
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7. Summary and conclusion

A dynamic model of reaming, which includes a process-damping model similar to that used in
turning and milling, is studied analytically. A stability analysis of the equations of motion leads to
an eigenvalue problem that yields a combination of frequency, spindle speed, and depth of cut
that produces borderline stable processes.
Hole form is shown to be dependent on the dynamics of the cutting process. The inclusion of a

simple process-damping model leads to the prediction of low-frequency modes which appear to
correspond to hole-form errors commonly found in practice.
The assumption that process damping eliminates chatter may be true, but low-frequency

unstable solutions arise as process damping is added, leading to hole-form error. The current
model is derived using kinetics, thus having predictive qualities. It shows a qualitatively accurate
result, and it explains a mechanism consistent with long-standing observations and qualitative
experimental data. The quantitative accuracy is not specified, since the process damping
parameter of the reamer is unknown as it moves through the hole. It is also true that the effective
tool stiffness increases as the tool moves through the hole [20], which is not modeled in this paper.
The increased stiffness will affect the tool’s natural frequency, but it should not affect the low-
frequency vibration modeled in this paper.
Experimental studies are necessary to improve the accuracy of the process-damping model

presented in this paper. This model was built from quantitative structural and cutting force
models, while the process-damping values were varied over a large range. The results from the
model reproduce experimentally observed phenomenon of low-frequency vibration.
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Fig. 13. Four-flute reamer with on ¼ 382Hz; k ¼ 52; 400N=m; z ¼ 0:006: Cutting process parameters: kr ¼ 300N=rad;
mf ¼ 0:25; ks ¼ 2:84	 10

8 N=m2: (a) Three-dimensional plot of the hole for one revolution, (b) cross-section of hole.
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